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AD-A252 283
Twelfth Moving Base

Gravity/Gradiometer Conference
United States Air Force Academy

Colorado Springs, Colorado

Agenda

Tuesday 14 February

0800 - Buses depart USAFA Officers' Club for Fairchild Hall

0815 - Registration - 3rd floor Fairchild Hail, South End

0900 - Welcome/Introduction - 2Lt Warner

0910 - Opening Remark; - Dr. Martin (DMA)

0920 - "AFGL/DMA GGSS Program Review" - Mr. Borgeson (AFGL'

0935 - "Review of 1983 Moving Base Gravity Gradiometer
Activities at Ikell Aerospace Textron" - Mr. Metzger
(Bell Aerospace Textron)

1010 - "Comparison of at Sea Gradiometer Test Results
with an Independent Gravity Gradient Reference" -
Mr. Zorn, Mr. Henson (Dynamics Research Inc.)

1040 - Break

1055 - "Current GGSS ,lerformance Expectation and Error
Allocation" - )r. Heller (TASC)

1145 - Buses depart Fairchild Hall for USAFA Officers' Club

1200 - Luncheon - Officers' Club

1300 - Buses depart Officers' Club for Fairchild Hall

1315 - "Efficient Prozessing of Gradiometer Output Using
a Kalman Filter" - Dr. Hutcheson (Bell Aerospace
Textron)

1345 - "On-Going Work in Post-Mission Data Processing
Algorithm Development" - Dr. Heller (TASC)

1410 - "Three-axis Super Conducting Gravity Gradiometer" -

Dr. Paik (University of Maryland)

1500 - Break

1515 - "Overview of Airborne Gravity and Comparison of
Gravity and Gradient Anomolies" - Dr. Hammer
(University of Wisconsin)

Approved for public release; distribution unlimited.



1535 - "WGS /2 Gravity Gradient Reference Ellipsoid
and Earth Gravitational Model" - Mr. May (NADC)

1600 - Buses depatrt Fairchild Hall for USAFA Officers' Club

1615 - Reception - USAFA Officers' Club

Wednesday 15 February

0800 - Buses depart USAFA Officers' Club for Fairchild Hall

0815 - "Relooking at HASCONS for Representing Gravity
Survey Data" - Dr. Breakwell (Stanford University)

0840 - "Integral Formulas Relating Gravity Gradients to
Vertical Deflection" - Mr. Zorn (Dynamics Research
Inc.)

0910 - "Real-time Vertical Deflection Estimation Using
Gradient Data" - Dr. Feldman (Snc.rry Corp)
(Mr. B. Epstein, Co-Author, U, Navy SSPO)

0940 - Break

1000 - "Gravity Gradiometer Application to Tunnel Detection" -

Mr. Jircitano (Bell Aerospace Textron)

1040 - ***Time Permitting***
"A Simplification of the Least Squares Determination
of the Gravity Field..." - Dr. Reinhardt (Bendix)

1050 - DoD Executive Session

1200 - Buses leave
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MINUTES OF THE TWELFTH ANNUAL
MOVING BASE GRAVITY GRADIOMETER CONFERENCE

United States Air Force Academy
Colorado Springs, Colorado

14-15 February 1984

Tuesday Morning Session

Welcome/Introduction - 2Lt D.L. Warner (AFGL)
As coordinator of the two-day conference, Lt. Warner opened the mieting
on behalf of the co-s-ponsoring agencies, the Air Force Geophysics
Laboratory (AFGL) and the Defense Mapping Agency (DMA). She then introduced
Dr. C. Martin, Director of the Advanced Technology Division, DMA.

Opening remarks - Dr. C. Martin
Dr. Martin welcomed participants and attendees. He made referenc? to the
agenda noting his enthusiasm over topics of data processing and algorithm
development, and the breaking from topics of hardware development. He
expressed the urgency of the need to develop the necessary means co
analyze the data. Software development has a long lead time, therefore
Dr. Martin urged the gravity community to share insights, applica')le
software, anything that might keep individual software developers from
"reinventing the wheel".

AFGL/DMA GGSS Program Review - Mr. R. Borgeson (AFGL)
Mr. Borgeson, prograi manager of the Gravity Gradiometer Survey S/stem,
presented a review oi: those milestones that have been accomplishej, and
those soon to be accomplished. He gave a brief description of the two
modes of the system: the land based and the airborne modes, incluling
mockup models and viewgraph sketches. He stated the accuracy reqjirements
of the system and showed diagrams and pictures of the actual three-axis
gravity gradiometer that Bell Aerospace Textron is under contract to
develop and build. Mr. Borgeson stated that AFGL and DMA are in the
process of determining which aircraft would best suit the needs of the
GGSS program. The present choices are the P3, the Convair 580, and the C130.

Questions:
Dr. S. Hammer (University of Wisconsin) - To what accuracy can we estimate
gravity using the gradiometer? Is it a prediction or demonstratei performance?

Mr. Borgeson - .18 arc seconds, .9 milligals and it is a specification
and predicted accuracy.

Mr. M. May (NADC) - What navigation system would be used on the P3, and
will a gravimeter be used?

*Mr. Borgeson - GPS navigation and no gravimeter.
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Review of 1983 Moving Base Gravity Gradiometer Activities at bell Aerospace
lextron - Mr. E. Metzger (Bell Aerospace Textron)
Mr. Metzger described the two programs Bell is working on: the Navy
Gravity Survey System (GSS) and the AFGL/DMA GGSS Program. He described
the performance of the Advanced Development Model (ADM) #1 (Navy) aboard
the USNS Vanguard. Having been in operation since February 1982 the
instrument failed less often than expected and met the feasibility
requirements in all tests. The ADM #2 has been in operation since
September 1983. Mr. Metzger outlined the status and future plans of ADM
#2 stating that the objective was to provide a test bed for verifying
modifications considered for operational systems. since Mr. Borgeson had
already covered the physical or hardware portions of the GGSS, Mr. Metzger
focused his attention on a discussion of error analysis and track spacing.

Questions:
Or. H.J. Paik (University of Maryland) - What is the origin of the red noise?

Mr. Metzger - Drift in the even order calibration coefficients of the
accelerometers.

Dr. Paik - Is the noise proportional to I/f?

Mr. Metzger - It is proportional to D tween 1/f and (I/f) 1 . 6.

Comparison of At-Sea Gradiometer Test Results With An Independent Gravity

Gradient Reference - Mr. D. Benson, Jr. and Mr. A. Zorn (Dynamics Research
Corporation)
Mr. B. Regenauer, Mr. Benson, and Mr. Zorn are co-authors of this paper
and it was presented by the latter two. Mr. Benson discussed the generation
of a gravity gradient reference off the north coast of Puerto Rico and
subsequent comparison of Gravity Gradiometer gradients with the reference.
The gradient reference was derived using position differences between an
accurate marine inertial system and an accurate geodetic position reference,
Autotape. Similar techniques have been used for vertical deflections
over land but, in contrast, require frequent stopping for gyro recalibration.
Mr. Zorn presented part two, the feasibility of the at-sea survey technique
which was established using covariance error analysis. Subsequently a
test plan was developed to acquire data for map development, and the
survey was performed with equipment onboard the USNS Vanguard. Returns
over the same paths and crossing paths during the survey allow separation
of time varying gyro and acclerometer errors from position varying
gradients and deflections when the survey data is processed. The analysis
and data processing include local geodetic constraints on the gradients
to satisfy the conditions of the earth's gravitational potential. Mr.
Zorn concluded by mentioning that the survey paths were repeated on a
later at-sea test with the Bell Gravity Gradiometer onboard. Gravity
gradients from the gradiometer compared remarkably well with the gravity
gradient reference along the survey paths.

Questions:
Mr. Borgeson - Is the progr.im under contract?

Mr. Benson - Yes, tinder contract with Sperry Management Systems, SP24.
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Mr. S. Jordan (Geospace) - Can you give an actual accuracy for test results?

Mr. Benson - No, it is classified.

Mr. P. Fell (DMAHTC) - What is the Autotape system?

Mr. Benson - A radar navigation line of sight positioning system.

Mr. W. Gumert (Carson Geoscience) - What speed were you surveyin( at?

Mr. Zorn - 5 to 8 knots.

Dr. W. Heller (TASC) - Is t'ere an RMS difference between map ani measured
gradients?

Mr. Benson - They exist but are classified.

A discussion followed between Dr. Heller and Mr. Benson concerning
possible RMS differences and how they depend on data processing md use of
low frequency information.

Current GGSS Performance Expectation and Error Analysis Allocati;n -
Dr. W. Heller (TASC)
Dr. Heller opened with a review of test and survey geometry of tie GGSS
and the desired goals. He discussed the error sources as well a'; the
GGSS sensitivity to variation in the frequency content of the grivity
field. Mentioned as well were the contribution of each class of errors
and the sensitivity to survey altitude. In his conclusions Dr. Heller
stated that the bottom-line is that the performance of the GGSS is expected
to fall well within prescribed specifications.

Questions:
Mr. J. Brozena (NRL) - The downward continuation and truncation ?rrors
refer to the center of the survey. What happens as you go away from the
center?

Dr. Heller - We have to be concerned with edge effects. Testing will be
done at the center of the survey region to minimize edge effects.

Mr. Zorn - Was only one gradient, Tzz, used?

Dr. Heller - Yes.

Mr. Zorn - What if other gradients are used, such as those that are more
directly related to the vertical deflection by integration? The error
could be overstated because these gradients are not used.S
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Dr. Heller - We used Breakwell's results that the best gradient to use is
Tzz. We incurred a penalty of a factor of 2 by not using other gradients
and the errors in Tzz were correspondingly scaled.

Mr. M. Molny (Sperry) - Why not put in a wider grid spacing for the
outside areas?

Dr. Heller - That's a good introduction to the next talk!

Dr. Jordan - Is te downward continuation to the physical surface or to a
reference surface!

Dr. Heller - This has to be resolved. We don't want to continue the data
below the surface. For convenience we chose the physical surface.

Dr. Jordan - I doi't believe we can meet the goals of the program using
the physical surfice is a reference. We can't downward continue in a
mountainous area.

Benson, Jordan, aid Holler further dicusse the choicc uf the reference
surface.

Dr. H. Baussus voi Luetzow (ETL) - W" ,eed to consider the shortcomings
of least squares collocation at 1igh frequencies (the use of stationary
models could introduce errors of 1U-20%). No terrain effects have to be
considered.

Dr. Heller - We plan to survey over smooth areas to test and demonstrate
the gradiometer and should be able to handle mountainous terrain in the
futur'e.

Mr. M. Trageser - Why do we need to downward continue at all? Why not
estimate gravity at altitude?

Dr. Heller - We %ant point estimates at the surface.

There was further discussion on this question between Heller, Trageser,
and Martin.

Tuesday Afternoon Session

Efficient Procesing of Gradiometer Output Using a Kalman Filter -
L7r. J. Hutcheson {BelI Aerospace lextron)
Dr. Hutcheson made several points concerning the processing of the data
to be collected oy the gravity gradiometer system. First, there are just
too many data points; they must be compressed. He presented a method to
process gradient data using a straight line Kalman filter. Dr. Hutcheson
showed comparisons of the STAG model and state space approximations. He
compared results of fixed point smoothing and least squares collocation.
Results were simulated using a MASCON synthetic gravity field.
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Questions:
Unidentified questioner - What wavelengths were modeled with the MASCON
mode l ?

Dr. Hutcheson - The North Atlantic Gravity Model was used. The vavelengths
are possibly classified.

Or. C. Jekeli (AFGL) - When using the straight line filter, are (orrelations
frbm track to track taken into account?
Dr. Hutcheson - Two dimensional correlations are taken into accoi nt in a

subsequent stage of processing.

Mr. P. Ugincius (NSWC) - What about estimating away from the track?

Dr. Hutcheson - One can always contract the estimation point to ".he
nearest grid point.

On-goiny Work in Post Mission Data Processing Algorithm Oevelopm-nt -
Dr. W. Heller (TASC)
Dr. Heller presented some background information on the GGSS projram and
described what will be required for post mission analysis of the data
collected. He discussed various survey and data processing issues as
well as prefilter design considerations. On this topic Dr. Hellr concludes
that a 12 second filter time constant will be needed. 0,o the toic of
estimation approacnes to the gravity disturbance vector, Dr. Heller
proposed two alternatives:
a) a sequential complementary filter.
b) an optimized template algorithm.

Numerical data showing applications of these alternatives were presented.
Dr. Heller summarized by stating that on-going development is not a neat
"packaged deal" but an active process. He then proceeded to outline the
development of the algorithms.

Questions:
Mr. Zorn - How sensitive is the estimation if the aircraft is nct able
to follow the regular grid?

Dr. Heller - The system noise includes navigation error. If thc navigation

error becomes too great, we may cease data collection.

Dr. S. Hammer - How did you simulate the test data?

Dr. Heller - With ocean trench data by computing gradients which were
reinverted creating an anomaly field.

Mr. Molny - What is the actual mapping area?

S Dr. Heller 320 X 320 kilometers.

Mr. Horgeson - There are two test sites. Central Florida and Cheyenne,
Wyoming, are being considered based on weather data and availab e gravity
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data.

Mr. Molny - When cordensing lata, averaging, etc., do you consider the
survey design?

or. Heller We must make sure the data are reyular.

Mr. Molny - Lne could enlarge the size of the square by having larger
track intervals in the outside areas to pick up larger wavelength
information.

Dr. Heiler - We may do th's ror the test it we are interested only in
gravity estimates in the inner zone.

Uyincius, Hutcheson, Fell, Zorn, Benson, and Heller discussed use of the
template method.

Three-axis Super Conductiny Gr.vity Gradiometer - Dr. H.J. Paik (University
of Maryland)
)r. Paik opened his presentation with a review J his program to devPlop
a single axis version of a cryogenic gravi,y giradiometer. Dr. Paik then
went on to describe plans to develo'r three-axis superconducting gravity
gradiometer. He el.iborated ma*hematically on the expected sensitivity of
the instrument and ,,xplained its physical design with slides and viewgraphs.
Dr. Paik described 1he new pendulum suspension ind error compensation. 0
For adequate error compensation Dr. Paik proposed the development of a
six-axis superconducting accelerometer and described in detail its
configuration, desi jn features, and sensitivity as well as its operation
with a gradiometer. He concluded with a proposed time line for the
development of both a three-axis GUM and a six-axis accelerometer. His
ultimate aspirations include space born testing of the GGM in an earth
orbit aboard the space shuttle by the year 1990.

Questions:
Dr. Heller - At what time will an eror of lu-I E/(Hz)1/ be demonstrated?

Dr. Paik - This is difficult to predict. We may have to do temperature
control experiments to get rid of squid noise. We had hoped to have had
data 2 years ago, but we need to improve the platform. With a little
confidence and if the platform is OK, maybe next week. We are trying to
get better noise levels in the platform. Maybe next year.

Mr. Hastings (Sperry) - If you were to add proportional feed back, would
it improve the accuracy?

Dr. Paik - This would not improve the accuracy. It would increase the
dynamic range.

Dr. Jordan - GRM will get 10J km resolution at a cost of 1/3 billion
dollars. Would you care to comment on the resolution and cost of the
satellite gradiometer?

Dr. Paik - For ij-2 E sensitivity we get lUU kin resolution. To improve
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the resolution by a factor of two we need to improve the gradiume:er by a
factor of IOU.

Overview of Airborne Gravity and Comparison of Gravity and Gradient
Anomalies - Dr. S. Hammer (University of Wisconsin)
Dr. Hammer introduced his topic with a very brief history of gravity
measurements in a moving vehicle and a description of the Carson Helicopter
Gravity Measuring System (HGMS). HGMS has been operational for 6bout four
years and observes an average of 5CJ0 km of line da.ta per month vith a
probable error of the order of I regal and anomaly resolution limit of
about 3 km. Survey altitude, as specified, can vary frow low terrain
clearance up to about 14,00J ft (43uU m) above sea level and over any
type of terrain including environmentally restricted areas such s the
Wilnije Reserve in Alaska. Ir. his presentation Dr. Hammer comp( red the
magnitudes and rates of attenuation with altitude of gradient an( gravity
anomalies. He emphasized that the rate of attenuation of all comiponents
of the gravity gradient is the same for a given type of anomaly. The
qradient attenuates .)h altitude an order of magnitude faster than the

corresponding gravity anomaly. In conclusion Or. Hammer raised 'he
question: to accomplish the basic objectives oI this conference, what is
the best way to proceed? (a) Concentrate efforts on the developiient of
theory and instrunentation for gravity gradiometry; or (b) Under.aKe a
world-wide gravity mapping program with the rapid and precise HGI1S wni .h
is now available.

Questions: (deferred to Mr. W. Gumert of Carson Geoscience)
Mr. Borgeson - Did you have any problems with civil air traffic?

Mr. Gumert - There were no problems, as long as we filed a fligit plan

and flew low.

Dr. Heller - How far out to sea dicd you fly?

Mr. Gumert - 16U-180 km using line of sight radar.

Mr. Molny - Hoi do you separate vertical acceleration from gravity anomalies?

Ur. Hammer - Using barometric and radar altimeters.

Wednesday Morning Session

k)ue to unexpected circumstances, the order of presentation as shown on
the agenda was slightly rearranged.)

A Simplificatior of the Least Squares Determination of the Gravity Field
from Low-low SaLellite Tracking Data Utilizing An Operator Repr(sentdtion
of the Range Observable - Dr. V. Reinhardt (Bendix Field Enginefring
Corporation)

* Dr. Reinhardt introduced his paper by explaining that one of th. purposes
of NASA/Goddard Space Flight Center's proposed Geopot-ntial Research
Mission is to map the gravity field of the Earth to 1-2 myal in 41,2b3
I degree by I degree blocks using range rate tracking data betwoen two
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polar low orbiting satellites in the same orbit. Because there are 0
41,2b3 blocks in the gravity map, it takes, in general, at least 9.4x1U 1 3

real floating point operations (flop) to solve the least squares fit
(LSQF) matrix equation used to determine the gravity potential from the
tracking data. Dr. Reinhardt showed that with the circular orbit infinite
trdjectory length approximation, and an iterative method, one obtains an
approximate covariance matrix for the coefficients in less than 1.5x1012

flop. In his presentation Dr. Reinhardt also demonstrated the application
of this method to airborne gradiometry.

WGS Gravity Gradient Reference Ellipsoid and Earth Gravitational Model -
Mr. M. May (NADC)
Mr. May described the gravity gradient ellipsoid in terms of geographic
latitude using WGS-72 reference ellipsoid parameters. Additionally, he
described a representation of earth's gravity gradients by a Fourier
series for wavelengths down to 120 nautical miles.

Questions:
Dr. Hammer - What wavelength ranges were used?

Mr. May - 18U X 180 degree field which cor-x'spor ids to wavelengths down to
I2tI nautical miles.

Dr. Heller - Comment: for stochastic modeling, models have been determined

for the degree variances of the gravity field.

Dr. Jekeli - What is the advantage of using gradient maps over gravity maps?

Mr. May - It is advantageous to mix data for vertical deflection
determination at the instrument (gradient) level.

Re-looking at MASCONS for Representing Gravity Survey Data -
Dr. J. Breakweli (Stanford University)
Dr. BrPakwell introduced his presentation with the statement tnat the
representation of the higher harmonic part of the Earth's gravity field
by a finite grid of MASCONS in two layers, one at the Earth's surface and
one at the bottom of the Earth's crust, leads to an error in the gravity
components at altitude (in addition to the error from the estimation of
density fluctuations in the two layers). His discussion examined these
errors for various ratios of grid size to gradiometer altitude.

Integral Formulas Relating Gravity Gradients to Vertical Deflections -
Mr. A. Zorn (Dynamics Research Corporation)
Mr. Zorn presented a number of integral formulas relating gravity
gradients to verticdl deflections. The formulas are derived from standard
geodesy theory and are similar to the Stokes and Vening-Meinesz integral
formulas. He explaineii that the deterministic formulas provide a physical
explanation of certain properties common to various self-consistent
stochastic gravity models. For example, the high degree of correlation
between the gravity gradient, Txz, arid the vertical deflection Tx, in
most gravity models can be physically justified based on a deterministic
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integral formula. The integral formulas may lead to insight into the
construction of yradiometer filters to estimate vertical deflections
which are insensi,;ive to stochastic gravity models. Mr. Zorn discussed
implementation coisiderations involving discretization and truncation of
the integral formulas using surface gravity data over the Blake Escarpment.
He concluded with several statements including that vertical deflection
maps can be constructed from gradiometer survey data using StokeE' formula.

Questions:

Mr. Ugincius - Going from Tzz one can get any other gradient quantity.
Why measure these other components?

Mr. Zorn - To get other components we need Tzz over the entire earth's
surface. We therefore measure the other components to get more -nformation
especially in limited areas.

Mr. Ugincius - Would the tree diagram hold for spherical formula .ions?

Mr. Zorn - Yes

Dr. D. UeBra (Stanford University) - Are some paths more sensiti/e?

Mr. Zorn indicatcd on his diagram certain paths that would be affected by
low frequency errors.

Mr. May - The tree diagram can be derived from spherical harmonic
expansion. Is there distinction between gravity anomaly and gravity
disturbance?

Mr. Zorn - The difference is negligible.

Mr. A. Rufty (NSWC) - If we have gradient information only, we need
integration constants to get gravity quantities.

Zorn - We would need low frequency information to obtain the corstant of
integration.

Real-Time Vertical Deflection Estimation Using Gradient Data -
Dr. W. Feldman (Sperry; Co-author, Mr. B. Epstein)
Dr. Feldman discussed techniques and algorithms for making real-time
estimates of vertical deflections from gravity gradient measurements.
First he outlined the techniques and algorithms used to conditi(n sensor
data for effects of high-frequency noise, pressure sensitivity, self-
gradients, bias/trend, and carouselling. He then showed plots (if typical
gradient data before and after preprocessing to illustrate the (ffectiveness
of the preprocessing. Second, a batch filter formulation for e~timating
deflections from gradient and SEASAT map data was illustrated. Finally,
Dr. Feldman demonstrated filter results by plots of filter estiriates of
vertical deflection vs. reference values for several ship track,;.

Questions:
Dr. Heller - Why pull out the reference field in the instrument frame
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rather than in the NED frame?

Dr. Feldman - It is equivalent.

Dr. Heller - What are the practical considerations?

Dr. Feldman - It was simpler to do in the instrument frame and there was
less chance of error.

Gravity Gradiometer Application to Tunnel Detection - Mr. Jircitano (8ell)
Mr. Jircitano described a project being conducted by the Army in the
field of tunnel detection by means of measuring differences in gravity
gradients. There are two tunnel detection problems: 1) the detection of
new tunnels (those which had been dug after a previous survey of the
area) 2) the detection of old tunels (those that were present before
any previous survey).

Questions:
Dr. Reinhardt - What is the feasibility of tunnel dptLtior, if they were
masked by high density fill?

Mr. Jircitano - The possibility exit: but to compensate one would have
to half fill the tunnel with stcel which is impractical.

Dr. DeBra - Seasonal yroundwater has a significant mass. Is this a
problem for new tunnel detection?

Mr. Jircitano - Could be, but water would not collect in a tunnel formation.

Closing Remarks - Lt. D. Warner
Lt. Warner thanked everyone for attending this year's conference, especially
those who presented ptpers. She also offered a special thanks to her AFGL
colleagues who helped with audio/visual equipment and note taking. As a
date for next year's conference had not yet been established, she assured
all that they wotld be informed of the date as soon as it was reserved.

0
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ABSTRACT

COMPARISON OF AT-SEA GRADIOMETER TEST RESULTS
WITH AN INDEPENDENT GRAVITY GRADIENT REFERENCE

Donald 0. Benson, Jr., Alan H. Zorn, and Bernard J. Regenauer
Dynamics Research Corporation

60 Concord Street
Wilmington, Massachusetts 01887

At-sea demonstration and testing of the Bell Gravity Gradiometer near
coastal regions is desirable to allow access of engineering personnel for
equipment grooming and maintenance, and to obtain reasonable signal-to-
noise ratios since large deflections and gradients occur near many coastal
regions (Ref. 1). Reference gravity maps in these regions either do not
exist, do not have sufficient accuracy when derived from satellite altimetry
or are extremely time consuming to survey using gravimetric methods.

This presentation discusses the generation of a gravity gradient
reference off the north coast of Puerto Rico and subsequent comparison of
Gravity Gradiometer gradients with the reference. The gradient reference
was derived using position differences between an accurate marine inertial
system and an accurate geodetic position reference, Autotape. Similar
techniques have been used for vertical deflections over land but, in contrast,
require frequent stopping for gyro recalibration (Ref. 2). Feasibility of the
at-sea survey technique was established using covariance error analysis.
Subsequently a test plan was developed to acquire data for map development,
and the survey was performed with equipment onboard the USNS Vanguard.
Returns over the same paths and crossing paths during the survey allow
separation of time varying gyro and accelerometer errors from position
varying gradients and deflections when the survey data is processed. The
analysis and data processing include local geodetic constraints on the gradients
to satisfy conditions of the earth's gravitational potential (Ref. 3).

The survey paths were repeated on a later at-sea test with the Bell
Gravity Gradiometer onboard. Gravity gradients from the gradiometer
compare remarkably well with the independent gravity gradient reference
along the survey paths.
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COMPARISON OF STAG AND STATE SPACE CORRELATIONS
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COMPARISON OF FIXED POINT SMOOTHING AND LEAST SQUARES COLOCATION RESULTS
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RATIO OF ERROR SIGMA OVER FIELD SIGMA VS DISTANCE ALONG TRACK
SHOWING EFFECT OF USING GGI SAMPLING DISTANCES OF 5 KM. 2.5 KM,

1 KM AND 1/6 KM
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SHOWING EFFECT OF USING GGI SAMPLING DISTANCES OF 5 KM, 2.5KM,
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VERY LOW NOISE SIMULATION
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OVERVIEW OF AIRBORNE GRAVITY AND COMPARISON OF GRAVITY AND GRADIENT ANOMALIES*

Sigmund Hammer

University of Wisconsin, Madison, WI 53706

William R. Gumert

Carson Geoscience Co., Perkasie, PA 18944

ABSTRACT

The topic is introduced by a very brief history of gravity measurements

in a moving vehicle. The Carson Helicopter Gravity Measuring System (HCMS)

is then described. HGMS has been operational about four years and observes

an average of 5000 km of line data per month with a probable error of the

order of i mgal and anomaly resolution limit of about 3 km. Survey altitude,

as specified, can vary from low terrain clearance up to about 14,000 ft

(4300 m) above sea level and over any type of terrain including environmental-

iy rcs:r1_ areas such as the Wildlife Reserve in Alaska.

The magnitudes and rates of attenuation with altitude of gradient and

gravity anomalies are then compared. It is pertinent to emphasize that the

rate of attenuation of all components of the gravity gradient is the same for

a given type of anomaly. The gradient attenuates with altitude an order of

magnitude faster than the corresponding gravity anomaly.

As a conclusion the question is raised: to accomplish the basic objec-

tives of this Conference, what is the best way to proceed? (a) Concentrate

efforts on the development of theory and instrumentation for gravity gradi-

ometry; or (b) Undertake a world-wide gravity mapping program with the rapid

and precise HGMS which is now available.

*Prepared for presentation at: Twelfth Moving Base Gravity Gradiometry Re-

view, U.S. Air Force Academy, Colorado Springs, CO, February 14-15., 1984



OVERVIEW OF AIRBORNE GRAVITY AND COMPARISON OF GRAVITY AND GRADIENT ANOMALIES

Sigmund Hammer and William R. Gumert

INTRODUCTION

So far as I know there are, as yet, no published field data from func-

tional gravity gradiometers. Our overview, therefore, will assess the pres-

ent state of gravity observations leading up to the present Helicopter Gravity

Measuring System (HGMS). This gravity overview may provide some useful back-

ground for evaluating the comparative potential usefulness of airborne gravity

versus airborne gradiometer measurements for this symposium.

First a very brief history of gravity measurements in a moving vehicle.

The first measurements of gravity in a moving vehicle were accomplished 55

years ago by Vening-Meinesz in a submerged submarine using special three-

pcnduiut a-paratus. Pis spectacular results over the Indonesian Islands Arc-

Trench system were early precursors of the subduction phenomenon which is a

major element in today's plate tectonics theory. Shipborne gravity surveys

with modern high-precision gravimeters began 40 years ago and continue today

on a commercial scale.

Airborne gravity measurements have been under investigation since about

1958. Tests in fixed-wing aircraft have yielded enough encouragement to jus-

tify continuation but satisfactory results have not been achieved up to now.

Successful commercial gravity surveys, using specially stabilized helicop-

ters, have been operational since 1979. High frequency anomalies, applicable

to petroleum exploration, are being mapped at requested altitudes from low

terrain clearance to more than 14,000 feet (4300 m). Since HGMS is quite new

it may be useful to present a very brief explanation of the operation.
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HELICOPTER GRAVITY MEASURING SYSTEM (HGMS)

The helicopter measurements are made in a large especially stabilized

Sikorski S-61. The first slide shows the helicopter in flight. Gravity is

SLIDE #1: Carson helicopter in flight

measured by a LaCoste-Romberg sea-air meter on a greatly improved stable plat-

form at the center of gravity in the helicopter. It may be of interest to

point out that the helicopter has been modified so that the center of gravity

does not shift as thousands of pounds of fuel are consumed. Total field mag-

netic field data are recorded simultaneously by a trailed proton precession

magnetometer. Terrain clearance is recorded by narrow bean laser. All data

are recorded digitally each second. Flying is done at night to minimize air

turbulence. Flight speed is normally 50 knots but can be specified for the

purpose at hand up to 100 knots (185 km/hr).

The procedure which brought success was to fly a more or less square

grid of intersecting lines as illustrated on slide 2. In this project the

SLIDE #2: Flight pattern

line spacing was 3,300 feet (1 kan) and flight altitude 1000 feet (305 m). The

area is a marshy jungle of extremely difficult access on the ground. Note

that north-south flights are avoided to improve the Etv~s corrections.

0



THE ATTENUATION PROBLEM

The principal elements in the operation are well illustrated in a demon-

stration survey over two well-known salt domes in the Texas Gulf Coast (Car-

SLIDE #3: Gulf Coast survey

son, I98]). The survey consisted of 20 lines, spaced one-half statute mile

(0.805 kI , within the area bordered by dashed lines as shown on Figure 3.

The contoured results clearly define the airborne gravity anomalies on the

two salt domes in the shaded areas. The contour interval is 1/2 mgal.

A comparison with ground data is illustrated on Figure 4. The salt domes

SLIDE #4: Profile results

are sketched at the bottom of the figure. Note the exaggerated vertical

scalp on the domes - the caprock is very shallow. Conventional ground grav-

ity data along the location of the flight line across the centers of the dome

are shown by the central profile. These data were kindly provided by inter-

ested oil companies, but not until after completion of the HGMS project. The

gravity profile measured in flight is the solid curve at the top of the fig-

ure. Upward continuation of the ground data, without filtering, are shown by

the dotted curve (. ). For comparison with the helicopter measurements

the upward continued ground data were then smoothed by the 60-second filter

which removes high frequency motional acceleration effects in the HGMS obser-

vations--------). The differences between the airborne and filtered ground

data nowhere exceed i mgal. However, it is obvious that the sharp, positive

caprock anomalies are strongly attenuated. This will be examined below.

A simulated, quantitative analysis of the anomaly attenuation is illus-

trated in Figure 5. This salt dome is comparable to the Big Hill and High

SLIDE #5: Simulated analysis

/ i



Island domes and is generally typical of salt domes with shallow caprock in

the Gulf Coast, U.S.A. The density contrasts were taken from Nettleton (1976;

Figure 8-14). The calculated gravity anomalies, with and without caprock, at

ground level and at "flight elevation" of 1000 feet (305 m), are plotted in

solid lines. The attenuation of the caprock anomaly is moderate. However,

for comparison with HGMS gravity measurements the "upward continued" ground

data must also be filtered. The filter used by Carson had a time-wid:h of

60 seconds and its width is directly proportional to flight speed. if the

filter width is equal to or larger than the width of the anomaly the smooth-

ing will be great. On the other hand, if the filter width is less than the

width of the anomaly the smoothing will be small. Thus, we see on slide 5

that an assumed flight speed of 50 knots* greatly attenuates the sharp cap-

rock anomaly and spreads it over almost the entire ancmnaly (xxxxx). For an

assumed flight speed of 25 knots, however, the filter widtb is only half as

wide and the attenuation effect for a caprock anomaly of this magnitude is

very much less (.

If high frequency. sharp anomalies are of interest, slow flight speed is

indicated. The flight speed for the 1981 demonstration survey was too fast

to record the complete caprock anomalies but the evidence of shallow positive

influence within the well-defined salt dome minima in Figure 3 are clearly

recognizable to an experienced observer.

Gravity gradient measurements, as mentioned at the beginning. are beyond

the scope of this study. This completes the overview portion of our paper.

*Filter width approximately equal to the width of the caprock anomaly.

0
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COMPARISON OF GRAVITY AND GRADIENT ANOMALIES

We turn now to the comparative study of gravity and gradient anomalies.

Gravity and gradient anomalies are quite different in both magnitude and be-

havior in space. Figure 6 compares gravity and several gradient components

SLIDE #6: Gravity gradient comparison

from a horizontal cylinder of infinite length at increasing altitudes. In

the present context, the point of interest on this figure is that the gradi-

ents, which are seen to have comparable magnitude at ground level, attenuate

with altitude an order of magnitude faster than the gravity anomalies. This

figure is fr.r an early paper (Harmmer, 1971) which analyzed the behavior of

gradients from a theoretical point of view.

Figure 7 is plotted on a semi-log scale and compares the rate of attenua-

tion with altitude of the gravity and vertical gradient anomalies for a spheri-

ca" ma.as. Gravity is shown by solid curves and right ordinate scale; vertical

SLIDE #7: Gravity and vertical gradient for a spherical mass

gradient by dashed curves and left ordinate. Three sets of curves represent

different depths (D) of the anomalous mass. For all cases the gravity anom-

aly at ground level ig(D) is 10 mgal.

If we assign resolution limits to the gradient and gravity measurements,

thesc curves define the maximum altitude at which the anomalies can be detect-

ed. For exanple, on the first set of curves (with 100 m depth to the center

of mass) the magnitude of the gradient anomaly drops below one (1) Ebtv8s

unit above altitude 1200 m; the gravity anomaly drops below one (1) milligal

abovE altitude 300 m. Thc other two sets of curves show data for greater

depths and indicate higher limiting altitudes.

S



As mentioned, this represents a gravity anomaly at ground level of

10 mgal. For larger (or smaller) gravity anomalies the ordinate magnitudes

are to be multiplied by the ratio.

Figure 8 shows a similar analysis for a two-dimensional gravity anomaly

SLIDE #8: Gravity and vertical gradient for a horizontal cylinder

for a horizontal cylinder of infinite length. The limiting altitudes of

detection for this case are considerably larger. The maximum altitudes at

which the gradient and gravity anomalies in Figures 7 and 8 are detectable

(ig > I mgal, Vzz > iE') are listed in Table 1.

TABLE 1: Maximum Altitudes for Anomaly Detection

Sphere Cylinder

D Gravity Gradient Gravity Cr.;dient
meters meters meters meters meters

100 316 1260 1000 3162

500 1581 3684 5000 7071

2000 6325 9283 20000 14145

This analysis suggests that lower flight altitude is advantageous for

gravity measurements. This may be unfavorable for fixed-wing gravity opera-

tions. Jordan (1978) has shown that low flight altitudes have other advan-

tages as well.

This completes the technical portion of our paper.

0



PRESENT STATUS

Finally, it may be of interest to point out that very extensive coverage

of HCMS surveys has been accomplished in the past four years (Hammer, 1983).

Nearly 200,000 km of gravity line data have been observed in 20 survey areas,

16 of which werE overseas and 4 were in the United States and Alaska. The

normal production speed is 50 knots, but any speed up to 100 knots (185 km!hr)

is possible. The probable error of the data is of the order of 1 mgal and the

anomaiv resolution limit is of the order of 3 km. The helicopter is capable of

flights at altitudes up to 14,000 feet (4300 m) above any type of terrain and

environmentally sensitive access. Duration of flights is up to 7 hours. Nor-

mal output per month is about 3,000 miles (5000 km) of line data.

A very large project, which has been in progress for some time now, is

outlined on Figure 9. If you would like to escape this cold winter weather

SLIDE #9: Bahama,. project

in the sunny Bahamas you might like to get involved with this project.

S

I I ' h !
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CONCLUSION

In conclusion: the basic purpose of this paper is to emphasize to this

group that the anomaly attenuation of gravity gradient components is an order

of magnitude greater than of the corresponding gravity anomalies.

Finally, I would like to pose a fundamental di e.mra. The question is:

To achieve the basic objectives of this symposium what is the best way to

proceed9

(a) Should we continue the long-range development of the theory and instru-

mentation of the gradient measurements; or

(b) Undertake a world-wide gravity mapping program with the precise and

rapid HGMS which is now available?

0

*****FI S*****
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FIGURE CAPTIONS

Figure 1

Photograph of Carson HGMS in flight. Note trailing magnetometer at

lower right.

Figure 2

Flight pattern of HGMS survey. Line spacing I km, flight altitude

1000 ft (305 m), and flight speed 50 knots.

Figure 3

Demonstration gravity survey in 1981 over known salt domes in Texas Gulf

Coast. Flight elevation 1000 ft (305 m), flight speed 45 knots, and contour

4 nterval I1/2 mgal.

Figure 4

Profile comparison of HGMS and conventional ground gravity data from

demonstration survey in Figure 3.

Figure 5

Analysis and comparison of simulated HGMS and conventional ground grav-

.tv data relative to data in Figure 4.

Figure 6

Theoretical comparison of magnitude and attenuation of all gradient com-

ponents and gravity anomaly for a horizontal cylinder of infinite length.0

%6 1



12

FigurE 7

Comparative attenuation of gravity and vertical gradient anomalies over

a spherical mass. Note semilog ordinate which indicates that gradients at-

tenuate an order of magnitude faster than gravity. See also Table 1 in the

text.

Figure 8

SamE as Figure 7 but for a two-dimensional mass - a horizontal cylinder

of infinite length.

Figure 9

Layout of HGMS gravity survey now in progress in the Bahamas.

Figure 10 (extra)

Attenuation of airborne terrain correction simulated by an assembly of

:wo-dimtEnsonal mass eIements.
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Table 3 VAg(.) (m 1d) From Truncatiou

180 240 300

180 .043 .0069 .0011
S 135 (1) .048 .012

-M I t7 .28 .11

rr

Table 4 cA5(,) (m 1e) From Maseon Model Erie
With Optimal Scalar Averaging £ v

z (ka)
k) 180 140 300

110 f .000 .0013165 .11 .031l

220 I . .1 ,14

Table 6 vAg(s) (m td) From Mascon Model Error

With Optimal Matrix Averaging

185 .024 .0045

0
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Table 1 CA,(,) (m gal) From Estimation Error

A.s e I 1Nb~ . "(,M) ISO 240 300

OE 0.10 0.15 0.14

0.01E 0.022 0.018 0.017

Table Sa GA(,) (m gel) From Mascon Model Error

jZkm) 1 0 240 300

*0.2 02 0.037 0.036

0.025 0.044 0.041 0.037

0.33 0.077 0.068 0.16

0.6 1 0 .15 u 0.16

Table 2b wAr(a) (M g#l) From Mascon Model Error

X "'1W 240 300
(km)\ _ __ _

110 0.23 0.12 0.075

~~7rV") ~16 0.33 0.20

220 2.1 0.71 0.38

(90 LOCAL.
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Table 3 wA,(,) (m td) From Truncation

1K m) 180 240 300

180 .043 .0069 .0011
135 .19 .048 .012

c.7 .28 .11

Table 4 wA(,I (m ge) From Mascon Model Ernw
With Optimal Scalar Averaging

a (ka)

FA~ o)- 180IS 240 300]

110 .11 .001

Table A wAg(,) (m gd) From Mascom Model Error
With Optimal Matrix Averaing

a z(kza)
(km 18s 1140,

165 .1024 .004
22 .2 .12 0n34

0
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Table 1 wAr(s) (a gd) From Estimation Error

AS#WM Ii . 1 M~z (kim) 180 240

O.E 0.19 0.15 0.14

O.OIE 0.022 0.018 0.017

Table 3S Ae, (m #el) From Mascon Model Error

XZZt) 180 240 300

0.2 @t.27 002 0.0216

0.02,5 0.044 0.041 0.037

0.33 0.077 0066 0.1b

0.5 10.16' 0.15 0.15

Table 2b &A,(,) (m gel) From Mascon Model Error

(km 

_ 

_ 

_ 

_ 

_

110 0.23 0.12 0.075

37Y Q 'I(1 0.33 0.20

220 2.1 0.71 0.38
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Table $ 3 Ag, (m 1d) From Truncatios

1*,z(m 180 240 300

180 .043 .0069 .0011
1,IOU .19 .048 .012

'c--.783 1 .28 .11

rr

Table 4 (m #!) From Mascon Model Error
Wit Optimal Scalar Averaging 13 (

With Optimal Matrix Averaging

z (km)

1(km) ISO 240 30001

110 M.00000 .0001

165 ,.39 .11 .031

1 2 1 1
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Table I cAgs } (a ped) From Estimatlon Error

Aw.z (kin)180 S 40 300

OE 0.19 0.15 0.14

0.01E 0.022 0.018 0.017

Table 2 oAg(,) (m del) From Mascon Model Error

jmZ( ) 180 240 300

0.2 k 0.027 0.026

0.025 0.044 0.041 0.037

0.33 0.077 0.066 0.15

0.5 0 0.16 0.16

Table 2b e~r(,} (m #ad) From Mascon Model Error

I X("180 240 300

110 0.23 0.12 0.076

1 , ( 0.33 0.20

L 
M 20 2.1 0.71 0.38
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I
ABSTRACT

INTEGRAL FORMULAS RELATING GRAVITY
GRADIENTS TO VERTICAL DEFLECTIONS

ALAN H. ZORN
Dynamics Research Corporation

60 Concord Street

Wilmington, Massachusetts 01887

A number of integral formulas relating gravity gradients to vertical

deflections are presented. The formulas are derived from standard geodesy

theory and are similar to the Stokes' and Vening-Meinesz integral formulas.

The deterministic formulas provide a physical explanation of certain

properties common to various self-consistent stochastic gravity models.

For example, the high degree of correlation between the gravity gradient,

Txz8 and the vertical deflection, Tx, in most gravity models can be

physically justified based on a deterministic integral formula. The

integral formulas may lead to insight into the construction of gradiometer

filters to estimate vertical deflections which are insensitive to stochastic

gravity models. Implementation considerations involving discretization

and truncation of the integral formulas are explored using surface gravity

data over the Blake Escarpment.
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REAL-TIME VERTICAL DEFLECTION ESTIMATION
USING GRADIENT DATA

Presented at

TWELFTH MOVING BASE GRAVITY GRADIOMETER CONFERENCE
UNITED STATES AIR FORCE ACADEMY

14 - 15 February 1984

Presented by 0

W. Feldman
Sperry Corporation
Electronic Systems

Great Neck, New York 11020

and

B. Epstein
Strategic Systems Project Office
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SYNOPSIS
p

REAL-TIME VERTICAL DEFLECTION ESTIMATION

USING GRADIENT DATA

WALTER K. FELDMAN
Sperry Corporation/Electronic Systems

Great Neck, New York 11020

and

BERNARD EPSTEIN
Strategic Systems Project Office

Department of the Navy
p Great Neck, New York 11020

Techniques/algorithms for making real-time estimates of vertical
deflections from gravity gradient measurements are discussed. First,
techniques/algorithms used to condition sensor data for effects of
high-frequency noise, pressure sensitivity, self-gradients, bias/trend,
and carouselling are outlined. Plots of typical gradient data before and
after preprocessing are shown to illustrate the effectiveness of the
preprocessing. Second, a batch filter formulation for estimating
deflections from gradient and SEASAT map data is illustrated. Finally,
filter results are demonstrated by plots of filter estimates of vertical
deflection vs. reference values for several ship tracks.
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PREPRINT

A SIMPLIFICATION OF THE LEAST SQUARES DETERMINATION OF THE GRAVITY FIELD FROM
LOW-LOW SATELLITE TRACKING DATA UTILIZING AN OPERATOR REPRESENTATION OF THE

RANGE OBSERVABLE

V. Reinhardt
Bendix Field Engineering Corporation, Columbia, Maryland 21045

February 1984

ABSTRACT

One of the purposes of NASA/Goddard Space Flight Center's proposed
Geopotential Research Mission is to map the gravity field of the Earth to 1-2
rgal in 41,253 1 degree x 1 degree blocks using range rate tracking data
between two polar low orbiting satellites in the same orbit. Because there are
41,253 blocks in the gravity map, it takes, in general, at least 9.4x10 13

real floating point operations (flop) to solve the least square fit (LSQF)
matrix equation used to determine the gravity potential from the tracking
data. In this paper, by studying the symmetry of an operator which generates
the range rate acceleration between the satellites from the along track
gravity field, it is shown that the LSQF cross correlation matrix (T-matrix)
formed from a complex spherical harmonic (Yzm) expansion of the gravity
notential is, in the circular orbit infinite trajectory length approximation,
iagonal in n. Further, for the actual mission, an iterative method which

utilizes the inverse of the m-diagonal portion of the T-matrix, is shown to
produce the 32758 coefficients of the Yzm model of the gravity potential to 64
bit precision in less than 1x101

2 flop. A second iterative method is shown to
oroduce an approximate covariance matrix for the coetficients in less than
another 5x10 11 flop. This paper also demonstrates a method which eliminates
the problem of aliasing when attempting to solve the full problem
sequentially, first, by solving for the approximate trajectories of the
satellites with a reduced model of the gravity fiId, and then, by solving for
a full c,odel of the gravity field using the approximate trajectories.

1. INTRODUCTION

One of the purposes of Goddard Space Flight Center's (GSFC) proposed
Geopotential Research Mission (GRM) (Smith, et. al., 1982) is to map the
gravity field of the Earth to 1-2 mgal in 41,253 1 degree x 1 degree blocks
using range rate tracking data between t*3 polar low orbiting satellites in
the same orbit (low-low range rate tracking). Using worst case analysis, both
GSFC and the Johns Hopkins University Applied Physics Laboratory (APL), which
has Derformpd much of the design and study work for the proposed mission, have
concluded that the data analysis required to turn the range rate data into the
*jravity map will consume very large amounts of computer time even on the
fastest computers that exist today (Weiffenbach, 1983; vonBun, 1983). One of
the "nst time consuming parts of the data analysis is in solving the least
square it (LSQF) natrix equation used to determine the gravity potential from
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the tracking data because of the 41,253 blocks in the gravity map. It is
later shown that the solution of this equation using Gaussian elimination
techniques (See Section 5 and Appendix B.) will take, in general, at least
9.4x1O 13real floating point operations (flop).

By examining the symmetry of an operator which generates the range
acceleration from the along track gravity field, this paper demonstrates that
the LSQF cross correlation matrix (T-matrix) formed from a complex spherical
harmonic (Y,,) expansion of the gravity potential is, in the circular orbit
infinite trajectory length approximation, diagonal in m Further, for the
actual mission, an iterative method which utilizes the inverse of the
m-diagonal portion of the T-matrix, is shown to produce the 32758 coefficients
of the YZm model of the gravity potential in less than ix 1O'2 flop. A second
iterative method is shown to produce an approximate covariance matrix for the
coefficients in less than another 5x101' flop.

This paper also demonstrates a method which eliminates the problem of
aliasing when attempting to solve the full problem sequentially by solving for
the approximate trajectories of the satellites, and then, first, by solving
for the full gravity potential using the approximate trajectories.

2. GRM GRAVITY FIELD NORMAL EQUATIONS

As shown in Figure 1, the 2 GRM satellites will be launched in the
same 160 Km polar nearly circular orbit with an along track separation of
about 300 Km (Smith, et. al., 1982). On board navigation and control systems
effectively make the motion of both satellites drag free so changes in
satellite motion for times longer than a few seconds are solely due to the
gravity field of the Earth (Ibid.). Thus, the motion of each satellite can be
described by:

S= - V(r ,t) (2.1)

where r, satellite i's center of mass position, and V, the gradient, are in

units of Rh, the average orbital radius. The coordinate system for this
equation is an approximately inertial geocentric system, so the gravity
potential of the Earth,V, is a function of time due to the Earth's rotation.
From this point on, the time dependence of V will not be explicitly written.

To determine the Earth's gravity field, GRM will use the observable p,
the magnitude of the range vector between the center of mass of the satellites
given by:

r 2 1 -(2.2)
2 1

Since the satellites are in the same nearly circular orbit and p is small
compared with the circumference of the orbit, p is essentially the along track
component of - . Thus we can write:

p(t) - vsV(r 2 ) + :sV(r 1 (2.3)

where 7s is the component of the gradient along dg, the differential along
track vector fr'rn satellite I to 2 in units of Rh. We can rewrite this



3

in a more compact form using a position difference operator, P( ), defined by:

P()f(j=) = f(jr+) - f(jt). (2.4)

Using this operator, (2.3) becomes a normal equation for * in terms of V and
the operator P:

p(t)= - P VsV(r) (2.5)

where P will be implicitly P( ) unless the functional dependence is otherwise
specified. A normal equation for , the range rate observable, can be
generated from (2.5) by integrating the equation.

3. CIRCULAR ORBIT APPROXIMATION

If we assume that the orbit is circular, (2.5) can be written in a
form which will prove extremely useful later.

In a polar coordinate system, (r, 0, fl, whose north polar axis
coincides with the North Pole of the Earth, the along track diferential
coordinate, ds, is parallel to the 9 coordinate. If the descending node of the
orbit, n is 0 deg - 180 deg, ds = do. If the descending node of the orbit is
180 deg - 360 deg, ds = -do. Thus, since r =1 at the orbit height:

± a (3.1)

where the plus or minus depends on the value of 0n as given above.

Using (3.1) and integrating (2.5) with respect to t, we obtain an
explicit form for the normal equation for in the circular orbit
approximation given by:

p(t) = - PV/v (3.2)

where v is the satellite orbital speed. To obtain (3.2), we have used the fact
that:

dt = ds/v = *de/v (3.3)

and that P commutes with the integration.

We can also derive an explicit operator expression for P by
considering the properties of the displacement operator, 0, defined by:

D( f(+ r) = f(i+p). (3.4)

To derive the properties of D, first consider the operator for a differential
displacement. (This is a standard derivation found in many texts, i.e.,
Tinkham, 1964; Messiah, 1966.) For a differential displacement in the along

* track direction, di, D is given by:

(ds)f(r) = d -s.V f *) + f (r (3.5)
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so:

D(d) = 1 + dsV s . (3.6)

If we can assume all the dt are along the direction of ' (This true for p<<1,
the case here.), then we can write p = nds. Thus D(p) can be written as
(D(ds))n yielding:

D(p) : lim (1 + pVs/n)n : epv (3.7)
n-w

Using (3.1), we obtain:
D(-P) = e - p - -  (3.8)

(If p were not small, in the above expression, p would have to be replaced by

the arc length between the end points of p.)

But P can be written as:

P(:) = D( ) - 1. (3.9)

Therefore: 3

P( ) = e±-1. (3.10)

4. SEQUENTIAL LEAST SQUARES FITTING

The standard technique of deriving V from (2.5) or (3.2) using the
range rate data is co represent V by a set of known basis functions times
unknown coefficiencs and to use least squares fitting techniques to determine
the coefficients and the trajectory, r(t). Since our primary concern is V and
not F(t), one can attemot to solve the full problem sequentially, first, by
solving for the approximate trajectories of the satellites with a reduced
model of the gravity field, and second, by solving for a full model of the
gravity field using the approximate trajectories. Let us consider the
consequences of using this approach.

For this discussion, let our normal equation be represented as:

p(t) = Ea iPf i(r) + (b i +c i)Pg i(r) (4.1)i i

where we want to determine the cofficients ai and bi+c i given range rate data
taken over some unknown trajectory (t) and the known sets of functions fi and
gi. Assume also that, through least squares fitting over the same trajectory,
possibly using ancilliary data, we have found a solution:

Po(t) = EbiPgi( ) (4.2)
i

which has yielded the values bi and the approximate orbit vector ro(t). (The
fit may involve each satellite individually and may use a priori b i's.)
Defining p = - po and subtracting (4.2) from (4.1), yields:
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O :aiPfi(O) + E(bi+ci)Pgi( ) - biPg i(ro). (4.3)
1 1 1

Further assume that the functions f.(r') and gi(r) can be approximated by
f.(-o) and g'(i'0). (f and g don't ci~ange appreciably over the distance

This turns (4.3) into:
0

A (t) = aiPfi( r) + zriPg i(j) (4.4)
i i

It is necessary to include the set of c-coefficients in the problem
because the coefficients of the g-fuctions derived from a least square fit of
(4.1) will not, in general, be the same as the the coefficients derived from a
least squares fit which doesn't include the f-functions; to obtain the least
squares condition without the f-functions, the g-function must alias the
effects described by the f-function through alteration of the b-cofficients
from the "true" value obtained if the full least squares fit were performed.
(This is also true if a priori b-coefficients used in the 1st fit, were
determined from past fits.) Thus by including the the c- €oeff icied+s A4He
g-functions in a second least squares fit on (4.4), we can correct our
original b-coefficients to obtain better values and we can ensure that the
previous fit does not cause aliasing problems in the a-coefficients. Since the
coefficients of the g-functions are being refit, the only importance of the
first fit is to produce a good r (t).

If we were interested in a further refinement in the trajactory, we
could apply the approach used to obtain (4.4) to generate an expression for a
correction to the trajectory given by:

" (t) E a aivf( -Z~b i+C i) V(vg i Cd 4.5)
1 1

This expression could be integrated twice to generate a better estimate of
r(t) after the a;'s , bi's, and ci's were determined. This better r(t) could
then be used to obtain an improvea data set for generating Ap(t) which in turn
could be used to obtain improved a. and ci values, etc. Thus (4.4) and (4.5)
can be used together in an iterative chain to refine the results obtained
before iteration.

4.2 USING LEAST SQUARE FITTING TO DETERMINE THE GRAVITY FIELD

s If we now assume the g-functions are to be part of the f-functions and

set Ap = y, we can write (4.4) in the general form:

y(t) = z.aiPfi(r o ) (4.6)

Let us allow the fit functions and the coefficients to be complex even though
y is real. (This will lead to simpler notation later.) The sum of the squares
or x2 is then given by:

S fsw'(r °y-(aiPf( - i )) (4.7)

r 10 i i 0

where w'(ro) is a weighting factor tq be determined later and where the
integration is over the trajectory, rO.
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If the elapsed time for the trajectory is long compared with 24
hours, the rotation period of the Earth, the trajectory will pass over or
nearly over every point on Earth with a probability which is only function of
E (infinite trajectory limit). (The orbit period of the satellite must also
not be an exact harmonic of the Earth's rotation period, the case here.) In
the infinite trajectory limit, the orbit also passes over each point an equal
number of times with ds=+dO and ds=-d. In this limit and assuming the
circular orbit approximation, (4.7) thus becomes:

X2  E f dow( )(y-Ea*Pf*(Q))(y-Za iPfi(n))._8
2... ~ 2 ~ .~ .(4.8)

-+ 1 1
where we have replaced the integral over the trajectory with a sum over the
two possible directions of ds in P of an integral over a geostationary
spherical surface of radius Rh times an orbit densitV function absorbed into
w("4. In (4.8), notice that y is now a function of r, not t, and the implicit
t dependence in V has disappeared. y must now be interepreted as the average
value of j) over the earth fixed point (eq).The new weighting function w(o) is
given in terms of the old one by:

w ( M):n( e)w' ('r) (4.9)
0

where n(6) is the density of trajectory points over the Earth region (e,p) given
by:

n(e) = Nrev/(nsin8) (4.10)

where Nrev is the number of revolutions in the trajectory. (4.8) is not a
practical x2 for performing the actual least square fit, but will be usefulfor the theoretical analysis of the least square fit problem to follow.

From (4.8), least square fit equations can be developed in the usual
way (Wolberg, 1967) by taking the derivatives of x with respect to the
a-coefficients. This results in the following matrix equation:

L = TA (4.11)

where:

A. = a. (4.12)

Li = (I/2)E+id~wyPf.(6,,p) (4.13)

Tij = (1/2)ZdP2wP fi Pfi (4.14)

L and A are column vectors and T is a hermetian matrix whose inverse provides
the solution:

A = T-1 L (4.15)

The covariance matrix Cij = <SAi A*> (<..> is an ensemble average) isqivyen by: 1
ebyC 

= TI x/F 
(4.16)

¢oA1 " ~~~~~~~ i Pk ,;, , ,fA .. , 4-I, k. ,v" * I,,,,,

& PA 1 C...4I. fu
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where F is the number of degrees of freedom, the number of independent
measurements minus the number of a-coefficients. We can determine x2 by
expanding (4.8) and using (4.15) to yield:

X2 = _A-A L = y? - L+A (4.17)

where AtL = EA*Li , etc, and where:
1

y2 = j£fW(e) y2 do (4.18)
+

If the x2 of (4.7) is used instead of that of (4.8), the equations
remain the same except that the sum plus integral over the spherical surface
goes back to an integral over the trajectory and w is replaced by w'

5. SOLVING THE MATRIX EQUATIONS

THE SCALE OF THE OVERALL PROBLEM

The basic GRM gravity data analysis problem is to find the orbit
approximation, r+(t), to solve the matrix equation (4.11) in terms of
functions at the orbit height, and to analytically extend the solution at
orbit height to the geoid. The analytic extension problem can be solved
without large computations by using basis functions for V which are solutions
to Laplace's equation. We will not concern ourselves with the orbit
computation problem here. We will concern ourselves here with the remaining
problem, the solution of the matrix equation.

There are two aspects of the matrix problem, forming the matrix
elements and inverting T. The size of these tasks are determined by the number
of basis functions, N, and the number of range rate data points collected, n.
N is determined by the number of blocks in the gravity map. In a coordinate
lattice which minimizes the number of blocks (regular square spherical shell
lattice), the 1 degree resolution requirement of GRM (Smith, et. al., 1983)
translates into 41,253 such blocks. If localized functions are used to make
the map, one function to a map block, then there will be 41,253 basis
functions. If complex spherical harmonics,Yzm, are used to the point where one
half wavelength of the function (n/t) equals the block size? there will be
spherical harmonics to order =180 and there will be ((941)'-3)=32758 real
basis functions. For a 6 month mission with 1 data point per 4 seconds
(Ibid.), n is 3.9x106.

Inverting an NxN matrix using Gaussian elimination techniques requires
approximately (4/3)N3 real floating point operations (flop) (See Appendix B.)
and requires access to the matrix elements N times. Use of caching techniques
as planned by GSFC in the proposed mission (Weiffenbach, 1983) and as
described by others (Duff, 1981) can reduce the number of of disk accesses to
the point where a large processor can run at 10 to 20 percent of full
processing speed (Briggs, 1984). This means that with a Cyborg type computer,

* one can plan on having 10-20 Mflop/s of effective speed (Ibid.). Using this
number for the processing speed and 41,253 for N, we obtain that 9.4x10 13

flops and 1300-2600 hrs of computing time required for inversion of T.

.(, ;



Forming the matrix elements for the matrix equation is dominated by
the calculation of T. Naively approaching the problem, it would seem that
there are on the order of nxN = 7xO flop required to calculate the
elements of T, based on calculating N"/2 basis functions for n data points.
Even at 80 Mflop, this would require 23,000 hrs to compute the elements.
However, since the basis functions only change for lengths on the order of a
block size, one does not have to calculate the basis functions for each point.
APL has developed a scheme to do this in approximately 5000 hrs of computer
time (Weiffenbach, 1980). The problem of calculating the matrix elements,
though clearly the dominant problem, will not be addressed here.

One approach to finding a way of reducing the computation time
associated with inverting T is to investigate the symmetries and near
symmetries associated with the P operator and various sets of basis functions
to see if the matrix can be broken down or approximately broken down into
several irreduceable submatrices (diagonal blocks of submatrices) of lower
dimensionality (Tinkham, 1964). These can be inverted with less computation
time because the number of operations goes as such a high power (N3 ) of the
di mensionali ty.

If a symmetry is only approximate, it will create small terms instead
of zeros off the irreduceable submatrices. If a residual matrix equation is
created by operating on the original matrix equation, TA = L, with the inverse
of the approximately irreproduceable submatrices of T, it is shown in Appendix
B that the residual equation can be solved iteratively if the residual
T-matrix is diagonally dominant. If this is the case, Appendix B also shows
that the residual equation can be solved for A iteratively in less than x1O 2

flop (Appendix B.4) and that an aproximate T-1 for determining the covariance
can be generated in another 5x10 flop (Appendix B.6). 0

Investigations by the author using the form of the P operator derived
in Section 3 were carried out using point anomaly basis functions and
spherical harmonic basis functions. The point anomaly functions were generated
from the gravity field of point masses at the center of square spherical shell
lattice blocks at a depth below the surface equal to the width of the block.
The T-matrix generated from these anomaly functions was highly diagonal but
unfortunately was not diagonally dominant. Also unfortunate was the lack of
correlation in the large off diagonal terms (nearest neighbors) which may cause
back-filling problems (See Appendix B.I.). (This is an essential feature of
trying to index a two-dimensional surface with a one dimensional matrix index
- most nearest neighbors are not nearest in index number.) To show that the
matrix does or does not have back-filling problems will require further
investigation.

The investigation using spherical harmonic basis functions proved so
successful in demonstrating that there is an approximate symmetry which will
greatly reduce the computation time required for inverting T that only this
approach will be presented here. The next section presents the approach based
on these functions.

0



9

6. CONSEQUENCES OF USING SPHERICAL HARMONIC BASIS FUNCTIONS

Let us consider the consequences of using spherical harmonics as the
basis functions for V. To simplify writing the equations and for other reasons
which shall become apparent later in this section, let us use the complex
spherical harmonics, Ym(e,), with complex coefficients a... rather than the
real spherical harmoni f, R (0,) and S m(e,@) used normally in Geodesy
(Heisman and Moritz, 1967)."Tn terms of im a solution to Laplace's equation
valid in all regions outside a sphere of any radius is given by (Jackson,
1962):

0, z aim 
(6.1)V(r,fl = vE E_ i- i Y Zm(e,f)

Z=o m=-k r

where we have normalized the coefficients so:

V 9 (6.2)

f(1,64) E a Y m(e, )
Z=0 Mn=-Z

Yem is given by (Messiah, 1966, Vol. 1, Appendix B):

Y= (-)m [ (2z+QI- 'm)! (cose) eim (6.3)km 4 (+m)! PM(63

where P.im is the associated Legendre polynomial of order (Zm) given by the
following for positive m (Ibid.):

P m(x) (1-x3) m di+m (xa-1)k (6.4)
dx

For negative m, the PIm are defined by (Ibid.):

Y (-I) m * (6.5)

As defined here, the Y0,are orthonormal with respect to integrations on a
unit sphere (Ibid.).

For a spherical harmonic basis, in the circular orbit approximation,
the T-matrix elements become:

Tm m  = A E f Y M P Y m(e) dQ (6.6)

where we have put a restriction on w(Q) that it be only a function of e.
Normally, the weighting function in terms of the trajectory integral, w'(rd,
will be a constant; since p is approximately the same everywhere along the
trajectory, we expect the range rate data collected all along the trajectory
to have about the same noise content. This means that normally w(sQ) is
proportional to n(e), so the restriction is normally satisfied. In the next
piraqraph, we will show that this restriction, along with the properties of R
in the circular orbit approximation, are instrumental in simplifying the
inversion of the T-matrix.



10

The expression for the P operator in the circular orbit approximation,

(3.10), is written in terms of the operator a/aQ. Since P has no 0 dependence,
it does not effect the functional dependence of the Y m' s with respect to
(e Im€). Thus, since we assumed w(s) is only a function of e, the matriS
elements will be zero if m is not equal to m' because the integral of eimo

over 360 degrees is zero unless m=m', regardless of the 3 behavior. In other
words, the T-matrix is diagonal in m. For a given m, there are only Y m's with
with 0>=1ml, so each T mem is non-zero only for Z > im: and z'> ml.

The fact that the T-matrix is diagonal in m greatly reduces the number
of computer operations required to invert the T-matrix. If we subgroup the
indices by m first rather than by 9. first, we can form the T-matrix into
2Z +1 diagonal m submatrices. (zm =180 is the maximum value Iml can have.)
Eaci m submatrix for m>=1 has ( Z_-tmf+1)2 complex elements ( (2Z +1)
elements for m=O). Summing for m = - m to Zm the approximatelym

(16/3)(Z -lml+l) ' real operations required to invert each submatrix, we find
that only approximately (8/3) Z4 =2.8x10 9 flop are needed to invert the fullm
matrix. Also of impact on the computation time is the fact that the largest
submatrix (m=O) only requires 260642 real words for storing the matrix
elements (and only 64800 words for the next largest, etc.), so we can load
each submatrix to be inverted wholly into core memory on a large machine. This
means the machine can run at virtually full speed to invert the matrix. So
assuming an 80 Mflop/s computation rate and a 1 Mbyte/s disc transfer rate,
one can invert the matrix in 66 seconds.

To aid in further investigations of this approach, it would be useful
to be able to calculate the matrix elements of T in the circular orbit
approximation. Appendix A shows how to generate closed formulas for the matrix
elements without actually performing the integrations. It shows that the
operator P in the circular orbit approximation can be written in terms of the
quantum mechanical angular momentum operators, L+and L_ (Messiah, 1966), which
have well known properties when acting on Y and yield linear combinations of
other Y m's. It also shows that the orbit density function in the circular
orbit approximation times Y, can be expressed as linear combinations of other
Y ms. Together these properiies, along with the orthonormal property of the
y s, allow T , to be written in terms of sums over coefficients which
are functions J ',m',and p.

7. WILL AN ITERATIVE INVERSION OF THE RESIDUAL T-MATRIX CONVERGE?

We showed for (A) a circular orbit polar orbit, (3) w(r) = w(a), and
(C) the infinite trajectory limit that the T-matrix can be inverted fast
because it is diagonal in m. In Appendix B, it is shown that the actual matrix
equation, TA = L, can be solved iteratively for A (Appendix B.4) and for an
approximate covariance (Appendix B.6) if the residual T-matrix formed by
operating on T with the inverse ot the diagonal-m portion of T is
diagonally dominant (Appendices 9.3 and 8.5). Let us examine the violations of
the assumptions (A), (8), and (C) that will occur in the actual planned
mission to see if the diagonal dominance criterion is satisfied or not.
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In the infinite trajectory limit, for the diagonalization in m to be
violated there must be some 0 dependence in P, w(i?), or vs (See equation2.5.).
A small eccentricity in the orbit would not cause problems because this only
causes mixing of the radial and ecoordinates. A deviation of the orbit from a
polar one causes mixing of the Ocoordinate into the p. argument of P and
into vs, but in a way which doesn't effect the diagonalization ao f.Iows TI.se
dependent part of p-' can be written as, and the dependent part of Vs is
proportional to:

(p.V)o = tp (6)(1/sine ) . (7.1)

where p ( 0) functionally describes the orbit with 6 as the independent
variable and wheje .the * is for the 2 possible directions of ds at the point
, ). Since 4e mO =ime ilm , this term does not change the orthogonality

of the Ym'S, so the matrix elements off diagonal in m remain zero. Also a
deviation of the orbit from a polar one does not cause w(J) to become a
function of p since the density remains axially symmetric regardless of the
orbit in the infinite trajectory limit. Therefore, a deviation of the orbit
from a polar one does not produce terms off diagonal in m in the infinite
trajectory limit.

The finiteness of the actual data, however, can introduce p dependence
into w(i). As stated previously, this effect goes to zero in the limit of an
infinite trajectory length since the phase relationship between the rotation
of the Earth and the rotation of the spacecraft around the geocentric fixed

*orbit go through all possible relationships equally. Since the orbital period
is much less than the Earth's rotation period, the effect of the finite data
length in the limit of many orbits, is given, to 1st order, by the residual
assymmetry in the trace of the orbit as the Earth turns under the orbit. Since
the Earth turns under the orbit once in 24 hours, the relative assymmetry in
n(2) will be given by a maximum of (12 hrs)/(6 mo) =3xi0 "3. This number is just
above the level of the order of magnitude criterion for diagonal dominance
based on the assumption that all the off diagonal elements in m are equal as
given in (B.18). (See Appendix B for a more detailed discussion.) We must,
thus, examine this effect in more detail.

The assymmetry is a periodi step type function in with a 21r period
and an amplitude 0.003. (For Oa<0<4b, w is less by 0.003 than w for other
values of P). Since the - dependence of Yom is given by eimrP , the relative
size of 1TZmZ,r,, to IT I will be given by the the absolute value of
(m-m')th harmonic amplitfiemof the fourier transform of a periodic step type
function. The absolute value this harmonic is less than 0.003*2/(7:m-m':)
regardless of the width of the step (Selby, 1974). Therefore the criterion for
convergence of the iterative inversion without assuming the off diagonal matrix
elements are equal, (B.17) (See section B for more detail), can be written as:

0.5 > MAXz,z' JT~mZmI/JTtmZ m I = 0.002*2 ?n(1/m)

m= 1

=0.004fmdx/x (7.2)

0 0.004 In( m
0.5 > 0.02
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where we are using the worst case conditions off,2!= Z and m=O. Notice that
the diagonal dominance criterion is more than met. Th% inclination of the
orbit an angle z from a polar orbit will not change this result since we did
not assume any particular w(e) for the infinite trajectory length case to
obtain the relative size of the step function in 0.

Off diagonal T-matrix terms in m will be produced by higher order
spherical harmonic terms in the gravity potential through their effect on the
trajectory estimate (t). (In our anqular integration model, this will
produce 0 dependence in wCP through ro(t)'s influence on n(ed.) Terms in the
gravity field with the index im' will cause coupling terms in T between m and
m'. However, all gravity potential spherical harmonic terms with Im',>O are
less than 3x10 6 of the 1/r term (Gray, 1972) so we expect the relative size
of terms off diagonal in m due to this effect to be on the order of 3x10 "6or
less. (B.18), as mentioned above, states that the iterative inversion will
converge if the relative size of the off diagonal elements is less than 0.001.
Thus, this effect should not prevent the full matrix from converging
iteratively.

Another effect which must be considered is roll and yaw of the
satellites with frequencies equal to nv/(21T) (n= 1,2,3 ..... ) producing T
terms between m and m+_m'. Because the orbit is polar, however, this would not
produce terms coupling different m's but terms coupling different 's. Also,
since this effect would produce range rate data which would alias the effect
of gravity terms, GSFC and APL have taken great pains to ensure that this
effect will be measured and taken out of the range rate data before further
analysis. 0

Lunar and Solar effects are also too small to effect the
convergence of the iterative inversion of the T-matrix and they will usually
be removed from the range rate residual by the least squares fit which
determines the approximate trajectory.

8. CONCLUSIONS

The approach discussed in this paper of examining the symmetries of an
operator representation of the observable proved very fruitful in simplifying
the solution of the matrix equation for determining the gravity potential from
low-low satellite range rate data. This still leaves the even larger problem
of determining the matrix elements of the equation. This problem may also be
simplified by utilizing the T-matrix in the circular orbit infinite trajectory
approximation, which can be very quickly calculated (See Appendix A.), as a
zeroth order approximation for the actual matrix. Further study along these
lines will probably prove very promising. In addition, the circular orbit
infinite trajectory approximation should prove very useful in studying the
effects of various system errors and interactions on the errors in the
coefficients of the spherical harmonic expansion of the gravity potential.
This aporoach may also nrove very fruitful in simplifying other problems in
satellite geodecy and orbit determination.

0



13

APPENDIX A. CALCULATING THE T-MATRIX IN THE CIRCULAR ORBIT APPROXIMATION

The effect of P on YZmcan be calculated by using the following
formulas (Messiah, 1966,V.1, Appendix B):

a/e = (1/2)(e'0L - eiCL ) (A.1)

where:

L. =e-+;€(+ 3  + icot(e)L ) (A.2)

and where:

L Y = (t(t+i) - m(m±1)) Y (A.3)

If we now turn the full formalism of quantum mechanics, we can obtain
a representation of the T-operator. In bra-ket notation (Messiah,1966), one
can write the matrix elements of T as:

TiniMe = iZ<m"Ptw(O)P' Vm'> (A.4)

where the superscript t mnans the hermetian adjoint of the operator and where
the w(6) is put between P and P to indicate that the P operators only operate
on the Ym functions. Thus the T operator is:

T = (ee6\6±-)w(e)(e- /o-1) (A.5)
4.

where the hermetian adjoint of a/3e is written as 66\6 to emphasize that it
operates in the backward direction.

If we expand the exponentials, collect terms of the same order in
p, and oerform the sum over the two directions of the orbit, we obtain:

G 2n-i 6 2n-j 2n
T = e (A.6)

n=1 j= (2n-j)! j!

The lowest order term in p, TI is given as:

T I = ( e)6\6)pw(o)( ;/ae). (A.7)

Setting w'(r)-1, we can write w(a) as:

w(e) = Nrev/(wsine). (A.8)

From a recursion relation derived from the fact that Y is proportional to
e-l sin@ (Mertzbacher, 1961), one can show that the "uptprator" 1/sine
operating on Y ;m yields:



Yzdslne F2 m [ (A .9)

=0m(2 Y2j..l,m.I
-2j+2

n
where Fm, the number of permutations of m object out of n, is:

nFm = n(n-1)(n-2) ..... (n-m+1) (A.1O)

and where:

Z - 2jm  - I . Im+1| (A.11)

Using (A.1), (A.3), (A.6), (A.9), and the orthonormality condition
(6.6), a closed formula can be written for the T-matrix elements as a sum of
coefficients which are calculable functions of ,m,z',m', and p without having
to perform any numerical integrations. This could be set up in recursive form
on a cremputer and accomplished without using a great deal of computer time.

S
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APPENDIX B. SOLVING THE MATRIX EQUATIONS

8.1 DIRECT METHODS

Before proceeding it is useful set up some simplifying terminology. The
matrix equation to be solved is given by:

TX = B (8.1)

where T and B are known and X is to be solved for. T is a square matrix of
size NxN, B is an NxM matrix (a column vector when M=1), and the solution X is
an NxM matrix. In the case of finding the solution of the inversion of T, L6 is
the NxN identity matrix I, and X=T-'. When perfo,'ming certain operations on
the equation in finding the solution, ,t is useful to introduce the concept of
the augmented matrix, Ta. Ta is an Nx(N M) matrix formed by augmenting the N
columns of T with the M columns of B; that is:

Ta = T (+) B (B.2)

where (+) indicates the dimensional addition of the columns of T and B
together.

The various direct numerical methods used to solve matrix equations
and invert matrices fall into 3 basic catagories, Triangular Gaussian
elimination methods (Doolittle,Crout, etc.), Full Gaussian elimination
(Gauss-Jordan), and sequential transformation methods (LU deconpostion,
partitioned matrices, Householder) (Riess, 1981; Gastinel, 1970; Detoma and
Wardrip, 1982; Ralston and Rabinowitz, 1978). The sequential transformation
methods are usually used only for special cases to take advantage of special
synmetries such as large blocks of zero elements (LU and partitioning) or when
only a small amount of memory is available (Householder). For the general case
on large computers, usually one of the first two catagories is used.

Both of the first two catagories rely on Gaussian elimination (Riess,
198I; Gastinel, 1970). This consists of turning the off diagonal elements of ok
pivotal column (full), 1, or a section of the pivotal column (triangular) of T
into zeros by operating on Ta with:

Ta (n+i) = Ta(n) - (T(n) /T (n) )Ta(n) (B.3)i= ij il lj 11

for all j not equal I in the Jordan method and for ,11 j greater than 1 in the
triangular method. This is performed N-i times wits. I = 1 to N-i to produce
I(+)X in the Jordan method and T"(+)B' in the triangular method where T" is an
upper triangular matrix. In the Jordan method the row j=l of Ta is also
operated on by dividing the Ith row by T .(The complication of pivoting to
minimize the error will not be discussedlBere (Riess, 1981; Gastinel, 1970).)
In the trianqular method, X is found by back-solving the modified equation as
follows: Since T" is upper triangular, the lowest row of the equation is of
the 'orm T" X N=BN.' so it can be solved for X by dividing BNi by T"

1 The value oX can iow be used in the next lowe 4 row of equatioa to find*
x and this in turn can be used to find XN2 ,j, etc., until t.,e whole
Pe t 4 on is solved.N-j



For M=1, and T symmetric, the number of operations to perform
triangular Gaussian elimination (The triangular method takes fewer or as many
operations as the Jordan method for all cases (Riess, 1981).) is approximately
(1/3)N 3 real floating point operations (flop) (Riess, 1981; Gastinel, 1970).
When M=N and T is symmetric (inversion) it takes approximately (4/3)N 3 flop.

Using this method to invert T, for T complex,it takes 4 times as many
real operations as for T real, Thus for complex and symmetric,
(4/3)N 3 (real) flop are required to find A and (16/3)N 3 (real) flop are
required to invert T.

It is not enough just to show that large numbers of the matrix
elements are zero or near zero; when a matrix is inverted using one of the
various Guassian elimination techniques zeros and near zeros can be
back-filled with non-small values very quickly during the factoring stage
unless there is some symmetry to prevent this from happening (Riess, 1981;
Duff, 1981). To see how fast the non-zeros turn into zeros, consider the
following. Suppose we have a large NxN matrix with a relatively small number,
k, of non-zero off diagonal elements in each row with the non-zero elements
occuring in a random pattern from row to row. In the factoring process of
Guassian elimination each row of the matrix T other than a pivotal row, 1, is
tras formed by the relation (B.3). If T.(n) were zero oi near zero and
T il n) and Tl (n) were non-small, one ca see that T.(n 1)would become a
non-small num er. This is what is called back-fillin After operating on the
marx elements with 1 pivotal rows and columns, because the probability of
Ti) being zero is virtually I when there are only a small number of
n3l-zero off diagonal elements, one can show that the average number of
non-zero terms in the remaining columns grows approximately as k2l until the
number of non-zero elements per row in the remaining columns becomes
comoarable to N. To keep this from happening, the zeros in one row must be
correlated to the zeros in another row to a very high order and must remain
correlated during the elimination operatations.

3.2 ITERTIVE METHODS

The two principal iterative methods are the Jacobi method and the

1 muss-Seidel method (Riess, 1981; Gastinel, 1970). The Jacobi method finds the
n+l)th estimate of X from the(nth estimate by:

X(n+l) = (B. - T X n) )/T. (B.4)
im im i J 11

The Gauss-Seidel method uses the most current estimate for X(n) , which for k<i

is X 1ni1). Each iteration takes 2N4 flop for M=1 and 2N fodminverting a
niatrix when T is symmetric. Thus, there is no gain in using tnis technique for
inverting mitrices, but there is a very substantial gain for M=1 as long as
tne solution converges in a relatively small number of steps.

B.3 THE COPVEOrGENCE OF ITERATIVE SOLUTIONS

If T is diigonally dominant and non-singular, the Jacobi,
]iuss-Seidel, and other similar iterative methods for finding the inverse of a
matrix or solving nAitrix equations will converge regardless of the first guess

r
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* (Riess, 1981; Gastinel, 1970). Diagonal dominance is defined by:

1 > Maxi IT ij /IT i I  (B.5)

where E' means the sum over j with j not equal to i and Max i means the largest
value for i = I to N. In fact if we define q as:

q = Max i  z'ITijj/ITiiI (B.6)

one can show that after n iterations:

IlAX(n) tl/llAX(O)tl S q n (B.7)

where llAX(n),I is the largest error in the nth estimate of the solution, X.
This means that, starting with Ti as a first guess for X, and given q =1/2,
the matrix elements would converge to 2-n times the largest element in n
iterations or approximately to a precision of 2 n in n iterations. If the
matrices are complex, as stated above each iteration in the Jacobi or
Gauss-Seidel methods requires 8N 2 (real) flop. Thus, obtaining a result with
2-nprecision requires only 8N2xn flop. For 64 bit precision, this becomes
512N 2 (real) flop.

Diagonal dominance is a stringent condition for large matrices. If all
the of diagonal elements were the same, (B.5) would become:

ITij I/ITii I = q/(N-1) (B.3)

For N=41,253 and q =1/2, this condition is IT.. /T.. I < 1.2x10-5.i3 11

B.4 ITERATIVE METHOD FOR DETERMINING THE EXACT COEFFICIENTS.

In this section, we derive an iterative method which solves for A
using X', the inverse of T', where T' is the T-matrix with all elements off
diagonal in m set to zero. The method produces A to 64 bit precision in less
than ix1IO 2 (real) flop. (See Sections B.5 and 7 for proof of convergence.)
It can produce A to any desired precision with corespondingly fewer or more
flop.

If we observe that:

T = T' + AT, (B.9)

we can write:

TA = (T' AT)A : L. (B.1O)

Multiplying both sides of (B. 9) by X', we obtain:

(I X' T)A = X'L. (B.11)



This equation can now be solved by the Gauss-Seidel or Jacobi methods if the
matrix elements of T off diagonal in m are small since I+X'AT has no matrix
elements diagonal in m which are off diagonal in Z. (See Sections B.5 and 7
for proof of convergence.)

Calculating A from (B.11) is dominated by the number of operations in
the multiplication of X' by AT and in the iterative proceedure. Since X' is
diagonal in m, and both Xand AT are symmetric, it takes 8N z' /3= 5.1xi0 11

(real) flop to perform the multiplication. Each iteration of the solution
takes 8N2 (real) flop. Assuming the solution will converge 64 iterations or
less (See Section B.3.), the iterative solution will take 512N 2 =5.5x1011

(real) flop. This means that the total number of operations to find A is
1.06x10' 2 (real) flop. This is a factor of 88 fewer flop than our original
estimate based on (4/3)41,253 3=9.4x101 3 flop.

B.5 CONVERGENCE CRITERION FOR MATRIX ELEMENTS OFF DIAGONAL IN m

Based on the iterative method of the previous section, iterative
convergence criteria for the T-matrix elements off diagonal in m will be
derived.

Since T has no diagonal terms in m and X' has only diagonal terms in
m, we note that I +X'T is equal to I for diagonal terms in m,and equal
to X' AT for off diagonal terms in m. The criterion for convergence of the
iterative solution of (8.11) is that I+X' AT be diagonally dominant as given by
(B.5) and (B.6), which in this case, with the noted properties of I+X'AT,
become:

1 > q Max Z'Z ,, X I I. (B.12)
Zm Z m fm Z m m

Noting that:

I ITII = Maxi 'IT .1 (B.13)
j 1j

is a matrix norm of T which satisfies the Cauchy-Schwarz inequality (Riess,
1982), 'e + .re'+e;

I IX' ATI I < IIX' I IAT1I (B.14)

q < I IX'II I ATI. (8.15)

But IIX'II is on the order of 1IIT'II, so we can write the approximate
relation:

q < MAX E' 'ITQm "m / 'ZITQ'm'm I (B.16)

Assuming IT m d, is on the order or bigger than IT s,,m,m I (For this matrix,
we expect tle o F diagonal elements to get smaller as m and m' differ.), we
can "divide out" the sum over ;" in the numerator. This yields the following
aooroximate relation:



(q

q < MAX ,IT , J/IT , I (B.17)

where MAX, ., means the maximum value ranging over allp'k and V. (B.17),
though of goiwhat dubious derivation, is probably good for order of magnitude
calculations.

A crude estimate for diagonal dominance can be obtained from (B.17) by
setting all the off diagonal elements equal. Setting q =0.5, for the worst
case of z and Z' equal to 180 and m equal to 0, we obtain:

IT mm, I/IT zm,m < q/(2 1 *1) = 0.001 (B.18)m

where the value given is for q= 0.5.

B.6 PERTURBATION THEORY METHOD FOR DETERMINING THE COVARIANCE MATRIX

From (4.16), the covariance matrix can be determined if we determine
T-1 and x2. To determine T -1 for this purpose, we don't need an exact
solution, but only an approximate one good enough for error estimates. The
following method will obtain an approximate solution for T -1 in only 5x10''
(real) flop.

We want the solution to:

TX=I (B.19)

where I is the identity matrix.

Suppose we have a solution:

T' X' =I (B.20)

where T is close to T. Then by manipulating (B.19) and (B.20), we can
generate:

X-X' = (I - X'T)T -i  (8.21)

If we use X) the separation T = T' + AT from Section B.4)and make the
approximate substitution T-1 = X', we obtain the following approximate formula
(1st order perturbation solution):

T = X - X'ATX' (B.21)

Given both X'AT and X' (from the solution to TA=L in Section B.4), it
takes 8N Z3 /3 (real) flop to produce X'TX' and 4 Z3 /3 (real)flop to

m2
Derform_ the remaining subtraction. The actual x can'pe calculated from (4.17)
using y defined by (4.18) with the integral in (4.18) changed back to the
integral over the trajectory. For 3.9x10 6 data points, calculating
takes 8x10 (real) flop and calculating A L takes only 3N=2.6xlO '(real) flop.
Thus, it takes approximately 8N Z3 /3 (real) = 5.1xlO 1' (real) flop to
produce this estimate of the covariance.
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DEPARTMENT OF THE AIR FORCE
AIR FORCE GEOPHYSICS LABORATORY (AFSC)

HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731

REPLY TO

ATTNOF LWG/Lt Warner

SUBJECT Minutes, Gravity Gradiometer Conference, 12-13 February 1985

TO Conference Attendees

1. Please find attached a copy of the meeting minutes, presentations

(if individually requested), and list of conference attendees. The minutes

were compiled by Dr. Chris Jekeli and me from abstracts submitted by

various presenters and notes taken at the conference. In some cases our

notes may have been sketchy resulting in our interpretation of questions

and responses after each presentation. In all cases we attempted to

report each presentation correctly and adequately.

2. 1 have reserved the same facilities at the USAF Academy for next

year's conference to be held 11-12 February 1986. We'll start requesting

papers late this summer. Registration will proceed soon after.

3. Thank you for your interest in gravity gradiometry. We look forward

to your continuing support.

DONNA L. WARNER I Atch: Minutes
Conference Coordinator


